Theoretical investigation of the molecular structure and transition dipole moments of the NaK low lying electronic states

نویسندگان

  • C. Ghanmi
  • H. Berriche
  • H. Ben Ouada
چکیده

The electronic structure and the spectroscopic constants of the low lying electronic states of the NaK ionic molecule have been determined through using an ab initio approach involving a non-empirical pseudopotential for the Na and K cores and core valence correlation correction. The potential energy of nearly 26 electronic states of R, P, and D symmetries has been calculated up to their dissociation limit Na(4d) + K and Na + K(6s). Their spectroscopic constants (Re, De, Te, xe, xeve, and Be) are derived and compared with the few available theoretical studies. A good agreement has been found for the ground state and few excited states with previous works. New potential energy curves were presented, for the first time, for the higher excited states. Numerous avoided crossing between electronic states of R, P symmetries have been localized and analyzed. Their existences are related to the charge transfer between the two ionic molecules NaK and NaK. Furthermore, we have determined the transition dipole moments for several states and analyzed the avoided crossings related to charge transfer between alkaline atoms. 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives

The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...

متن کامل

A Theoretical Investigation for Electronics Structure of Mg(Bio2)2 Semiconductor Using First Principle Approach

The Mg(BiO2)2 is the orthorhombic crystal system acting as semiconductor in electric devices. To evaluate electronic band structures, the total density of state (TDOS) and the partial density of state (PDOS), Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0) was used for Mg(BiO2)2. The band gap was recorded at 0.959 eV, which is supported by a good semiconducto...

متن کامل

Does One-third Scheme of PBE0 Functional Dominate Over PBE0 for Electronic Properties of Transition Metal Compounds?

The one-third paradigm of PBE0 density functional, PBE0-1/3, has shown to be a successful method for various properties. In this paper, the applicability of PBE0-1/3 is put into broader perspective for transition metals chemistry. As a comparative study, the performance of PBE0 and PBE0-1/3 has been assessed for geometries and vibrational frequencies of some transition metal hydrides and transi...

متن کامل

Theoretical Study of electronic Structure of [CoF6]3" Complex embedded in Nano-Ring

Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for Bi8N18-[CoF6]3- complexhave been carried out to study the non-bonded interaction. The geometry of the 1313N18 has been optimized atB3LYP method with EPR-II basis set and geometry of the [CoF6]3 have been optimized at B3LYP method withDe12-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electr...

متن کامل

Effects of on-center impurity on energy levels of low-lying states in concentric double quantum rings

In this paper, the electronic eigenstates and energy spectra of single and two-interacting electrons confined in a concentric double quantum rings with a perpendicular magnetic field in the presence of         on-center donor and acceptor impurities are calculated using the exact diagonalization method. For a single electron case, the binding energy of on-center donor and acceptor impurities ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006